Network Codes for Grid Connection

July, 5th 2016
What are the European Network codes?

• A set of rules that are applied to different areas of the energy sector

• EC has assigned ENTSO-E the task of drafting European Network Codes, with the framework directives from ACER and following stakeholder consultation.

- To guarantee the good working of Europe’s internal market in electricity
- To promote the completion and functioning of the internal market in electricity and cross-border trade
- To ensure the optimal management, coordinated operation and sound technical evolution of the European electricity transmission network

• This Regulation when published becomes binding in EU Member States.
Programme of the day about Connection Network Codes

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:15</td>
<td>Introduction</td>
</tr>
<tr>
<td>11:30</td>
<td>Most relevant aspects of the Network Codes presentation</td>
</tr>
<tr>
<td></td>
<td>Requirements for generators Network Code</td>
</tr>
<tr>
<td></td>
<td>Demand connection Network Code</td>
</tr>
<tr>
<td></td>
<td>HVDC Network Code</td>
</tr>
<tr>
<td>12:15</td>
<td>Implementation process of the Network Codes</td>
</tr>
<tr>
<td>13:00</td>
<td>Closing ceremony</td>
</tr>
</tbody>
</table>
Which are the Network Codes/European Regulation?

Connection
- Requirements for Generators (EU 2016/631) (RfG)
 - Demand Connection Code (DCC)
 - High Voltage Direct Current Connection (HVDC)

Operation
- System Operation (SO)
- Emergency & Restoration (ER)

Markets
- Capacity Allocation & Congestion Management (EU 2015/1222) (CACM)
 - Forward Capacity Allocation (FCA)
 - Electricity Balancing (EB)
Evolution and actual situation of the Network Codes

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>EC invites ACER to develop Framework Guidelines</td>
</tr>
<tr>
<td>2011</td>
<td>ACER Public consultation begins</td>
</tr>
<tr>
<td>2012</td>
<td>Final Framework Guidelines published</td>
</tr>
<tr>
<td>2013</td>
<td>Formal invitation to develop Network Code</td>
</tr>
<tr>
<td>2014</td>
<td>Public Consultation Period Begins</td>
</tr>
<tr>
<td>2015</td>
<td>Public Consultation Closed</td>
</tr>
<tr>
<td>2016</td>
<td>Final version submitted to ACER</td>
</tr>
<tr>
<td>2016</td>
<td>ACER opinion published</td>
</tr>
<tr>
<td>2016</td>
<td>Resubmission to ACER</td>
</tr>
<tr>
<td>2016</td>
<td>ACER recommendation published</td>
</tr>
<tr>
<td>2017</td>
<td>Operational Codes merged into a single operational guideline</td>
</tr>
<tr>
<td>2018</td>
<td>Comitology Begins</td>
</tr>
<tr>
<td>2018</td>
<td>Cross-Border Committee delivers opinion</td>
</tr>
<tr>
<td>2019</td>
<td>EC submits Code for scrutiny to the Council and European Parliament</td>
</tr>
<tr>
<td>2019</td>
<td>Network Code enters into force</td>
</tr>
</tbody>
</table>

1: In case ACER does not attach a recommendation to its opinion, ENTSO-E has the opportunity to resubmit the code.
2: Some provisions are going through early implementation before this stage. Estimated implementation period vary from 18 months for NC OPS to 39 months for NC FCA. For NC FCB, a 6 years phased introduction period is planned.
Actual situation of the Connection Network Codes (CNC)

- Cross-Border Committee delivers opinion
- EC submits Code for scrutiny to the Council and European Parliament
- Network Code enters into force
- Code is being implemented
- Network Code is monitored and can go through amendment procedure

<table>
<thead>
<tr>
<th>RFG</th>
<th>DCC</th>
<th>HVDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Q3 16</td>
<td>Expected Q3 16</td>
<td>From May 16</td>
</tr>
</tbody>
</table>

Extensive Stakeholder Engagement
Background

ENTSO-E

42
15 RfG
21 DCC
6 HVDC

Meetings with stakeholders

8
3 RfG
3 DCC
2 HVDC

EDSO for Smartgrids EWEA
Energy UK
Geode
CEDEC
IFIEC
EUROMOT
WG termal

EDSO for Smartgrids CENELEC
IFIEC
CECED
IFIEC

RfG
DCC
HVDC

Eurelectric
VGB Powertech
Eleclink
World Energy

EDSO for Smartgrids CENELEC
CEDEC
ESMIG
EDSO for Smartgrids CENELEC

Geode
Orgalime
Eurelectric

Eurelectric
VGB Powertech
Eleclink
World Energy

EDSO for Smartgrids CENELEC
CEDEC
ESMIG

Alstom
Vestas
OFGEM
IFIEC

World Energy
Dong Energy
GE Global Research

Red Eléctrica

• Information (each 6 months) in the Planning Monitoring Group
• Monographic sessions of the European Network Codes (2014)
Regulatory Aspects Common to all Codes

Basic Principles
- Non-discrimination
- Transparency
- Optimization between the maximum efficiency for the whole system and the lowest total cost for the parties involved

Confidentiality
- All regulated system operators should preserve the third-parties data and only use it for the purpose listed in each code.

Relations with national legislation
- Regulations and Exhaustive Requirements (closed) ⇒ No need to be transposed
- Non-Exhaustive Requirements (open) ⇒ Need to be defined at national level
Códigos de Red de Conexión

Structure and Common Aspects to Connection Codes (I)

General Regulation

- Definitions, range, regulatory aspects, cost recovery...
- Analysis of the application to existing facilities (modernization, substitution,...)
- Conditions to be considered as “existing facilities”

Technical Requirements

- Definition (exhaustive/non-exhaustive) of the technical requirements.
- No services nor operating procedures are defined, only the technical capabilities to set them up and its participation

Conformity Verification

- Possibility of verification by tests, simulations, declaring equipment certificates, etc...
Structure and Common Aspects to Connection Codes (II)

Applications and exceptions

• CBA analysis (retroactive implementation / requirements and exceptions definition)
• Exemption procedure → Possibility of exception of compliance of the requirements of the Network Code. Started by Agent / System operator.

Operational Notification

• Common scheme of Operational Notifications

| APESp | APES | EON | ION | FON | LON | Today | Network Codes |

Implementation supervision and final dispositions

• Non-binding guidance of implementation (ENTSO-E: ≤6m after EiF)
• Monitoring mechanism (ACER + ENTSO-E: ≤12m after EiF : indicator)
Thank you for your attention
Network code on requirements for grid connection of generators
Commission Regulation (EU) 2016/631

July, 5th 2016
ÍNDICE

- Subject matter, background and actual situation
- Scope of application
- Structure and technical relevant requirements
- Examples of open and closed technical requirements
- Preliminary Analysis of Impacts on the Regulation
SUBJECT MATTER, BACKGROUND AND ACTUAL SITUATION

SUBJECT MATTER OF THE REGULATION EU 2016/631 (RfG)

To establish requirements for grid connection of the significant power-generating facilities connected to the transmission and distribution system.

SCOPE

- Generators connected to the distribution system and transmission system
- Offshore generators AC-connected

ACTUAL SITUATION

- RfG published 27 April 2016 as Commission Regulation (EU) 2016/631

- Application of the requirements 3 years after its publication: 27/4/2019 to new generators (nevertheless, RfG includes a retroactive mechanism application)
SCOPE OF APPLICATION

– General, specific for synchronous generators and specific for non-synchronous generators (PPM).

– Exception of application for emerging technologies.

– Level of requirements depending on the maximum capacity of the generator and voltage level of the connection (Types: A, B, C or D). The Type A starts with 800W. The thresholds limits A/B, B/C y C/D should be determined according to Article 5 of RfG.

– There is the possibility of reviewing these limits each 3 years.

– Exhaustive and non-exhaustive requirements. The last ones must be defined by the RSO, TSO or according to other coordination schemes.

<table>
<thead>
<tr>
<th>Synchronous areas</th>
<th>Limit for maximum capacity threshold from which a power-generating module is of type B</th>
<th>Limit for maximum capacity threshold from which a power-generating module is of type C</th>
<th>Limit for maximum capacity threshold from which a power-generating module is of type D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Europe</td>
<td>1 MW</td>
<td>50 MW</td>
<td>75 MW</td>
</tr>
</tbody>
</table>
Structure of RfG:

- General provisions
- Operational notification
- Compliance
- Exceptions
- CBA
- Emerging technologies
- Technical Requirements

Optional
- Synthetic inertia
- Q fast injection
- P-f regulation
- P-Q capacity

Mandatory
- fault-ride-through

- RSO
- TSO
- RSO-TSO

Open

Closed

Procedures

Operational Notification - Compliance - Exemptions
Structures of RfG and Relevant Technical Requirements

Frequency stability
- Frequency ranges
- LFSM regulations
- P controllability
- ROCOF

Robustness
- Fault-ride-through
- Capacity to withstand P oscillations and reconnections
- Post-fault P recovery

Voltage stability
- Voltage range
- Q capacity at Pmax and below Pmax
- Fast fault current injection
- Q control modes

System management
- Control and protection schemes
- Instrumentation and simulation models
- Synchronisation

System Restoration
- Reconnection
- Black start
- Islanded operation
EXAMPLES: EXHAUSTIVE/NON-EXHAUSTIVE TECHNICAL REQUIREMENTS

EXHAUSTIVE:

Article 13.1.a:
Frequency ranges

<table>
<thead>
<tr>
<th>Synchronous area</th>
<th>Frequency range</th>
<th>Time period for operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continental Europe</td>
<td>47.5 Hz-48.5 Hz</td>
<td>To be specified by each TSO, but not less than 30 minutes</td>
</tr>
<tr>
<td></td>
<td>48.5 Hz-49.0 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.0 Hz-51.0 Hz</td>
<td>To be specified by each TSO, but not less than the period for 47.5 Hz-48.5 Hz</td>
</tr>
<tr>
<td></td>
<td>51.0 Hz-51.5 Hz</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

NON-EXHAUSTIVE:

Article 14.3.a:
Fault-ride-through

Article 21.2:
Synthetic Inertia

(a) the relevant TSO shall have the right to specify that power park modules be capable of providing synthetic inertia during very fast frequency deviations;

(b) the operating principle of control systems installed to provide synthetic inertia and the associated performance parameters shall be specified by the relevant TSO.
Operational Procedures affected*

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Affectation degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 Condiciones de entrega de la energía en puntos fronteras de la red gestionada por el OS</td>
<td>RFG: bajo</td>
</tr>
<tr>
<td>1.6 Establecimiento de los planes de seguridad para la operación del sistema</td>
<td>RFG: medio</td>
</tr>
<tr>
<td>7.4 Servicio complementario de control de tensión (posibilidad de unir con 7.5bor)</td>
<td>RFG: medio</td>
</tr>
<tr>
<td>9 Información intercambiada por el OS</td>
<td>RFG: medio</td>
</tr>
<tr>
<td>11.1 y 11.2 Criterios generales de protección; Criterios de instalación y funcionamiento de los automatismos</td>
<td>RFG: bajo</td>
</tr>
<tr>
<td>12.1 y 12.2 Solicitud de acceso para la conexión de nuevas instalaciones; Instalaciones conectadas a RdT: requisitos mínimos de diseño, equipamiento, funcionamiento y seguridad y puesta en servicio</td>
<td>RFG: alto</td>
</tr>
<tr>
<td>12.3 Huecos de tensión</td>
<td>RFG: alto</td>
</tr>
</tbody>
</table>

Additionally, possible revision of:

- RD 1699/2011 “Pequeña potencia”
- RD 413/2014 “Renovables, cogeneración y residuos”

Thank you for your attention
Demand Connection network Code (DCC) Commission Regulation (EU) 2016/1388

July, 5th 2016
ÍNDICE

- Subject matter and Scope of application
- Structure
- General Provisions
- Preliminary Analysis of Impacts on the Regulation
Subject matter and Scope of Application

Subject matter:

This Regulation defines the requirements for grid connection of new demand facilities, distribution networks and connections that are relevant due to its cross boarder impact and market integration.

Scope of DCC:

- SDO connected to TSO
- Consumption / CDS connected to TS
- Consumption / CDS with demand response services

Actual situation of DCC:

Comments sent to the translation.

Forecast date of entry into force: 3rd T 2016 (Scrutiny ended: 30/06/16)
STRUCTURE

Structure of CDC:

- General provisions
- Operational Notification
- Compliance
- Exemptions

Requirements

General Application
- Frequency (ranges and performance)
- Short-circuit current
- Reactive power (ranges and comportamiento)
- Protection and Control
- Information exchange
- Demand disconnection and demand reconnection
- Simulation models

Specific Application

- By voltage level (connected to RdT ≥ 110 kV):
 - Voltage ranges and performance
- By services:
 - DSR Active Power
 - DSR Reactive Power
 - DSR Transmission constraint management
- DSR System frequency control
- DSR Very fast active power control

Procedures

- Operational notification
- Compliance
- Exemptions
GENERAL PROVISIONS

Non-retroactive application of technical requirements

Frequency and Voltage ranges

Exhaustive requirements
non-exhaustive requirements → RfG + P.O.s in force

Main demand equipment

→ necessary for consideration of existing facilities not PES to the publication of the code.

«Main demand equipment»: at least one of the following equipment:
motors, Transformers and high voltage equipment, at the connection point and at the process production plant;

Protection and control requirements, short-circuit current.

Open requirements → P.O.s + agreements

«Main demand equipment»: at least one of the following equipment:
General Provisions

Reactive power requirements → Mostly P.O.7.4 in force

- **Demand disconnection:**
 - Low frequency demand disconnection
 - Low voltage demand disconnection
 - On load tap changer blocking DSO - TSO

Demand reconnection → Open

- **Definition of requirements of Power quality:** TSO definition (+adjacent TSOs)

 P.O.12.2 suggestion {Flicker, fault-ride-through, harmonics, unbalances}
ASPECTOS RELEVANTES

Demand response services (DRS)

- **Provision:** From demand facility to each demand unit used by a demand facility
- **Management:** individually (owner or CDSO) or aggregated (through a third party)
 - neither the aggregation nor the aggregator figure are defined in the Spanish regulatory framework.
- **At present:** Interruptibility →
- **DCC:**
 - DSR P control
 - DSR Q Control
 - DSR System frequency control
 - DSR Very fast active power control
 - DSR Transmission constraint management
Preliminary Analysis of Impacts on the Regulation

Operational procedures affected*

<table>
<thead>
<tr>
<th>Operational procedures affected*</th>
<th>Affectation degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 Condiciones de entrega de la energía en puntos fronteras de la red gestionada por el OS</td>
<td>Bajo</td>
</tr>
<tr>
<td>1.6 Establecimiento de los planes de seguridad para la operación del sistema</td>
<td>Medio</td>
</tr>
<tr>
<td>7.4 Servicio complementario de control de tensión (posibilidad de unir con 7.5bor)</td>
<td>Medio</td>
</tr>
<tr>
<td>9 Información intercambiada por el OS</td>
<td>Medio</td>
</tr>
<tr>
<td>11.1 y 11.2 Criterios generales de protección; Criterios de instalación y funcionamiento de los automatismos</td>
<td>Bajo</td>
</tr>
<tr>
<td>12.1 y 12.2 Solicitud de acceso para la conexión de nuevas instalaciones; Instalaciones conectadas a RdT: requisitos mínimos de diseño, equipamiento, funcionamiento y seguridad y puesta en servicio</td>
<td>Alto</td>
</tr>
<tr>
<td>15.2 Servicio de gestión de la demanda de interrumpibilidad</td>
<td>Medio</td>
</tr>
</tbody>
</table>

Aditionally, possible revision of:

- RD 1164/2001, about reactive power ranges.
- RD 1699/2011, about frequency ranges, voltage ranges, fault-ride-through, voltaje control, etc.
- IET 2013/2013 about the management and application of the Interruptibility

Thank you for your attention
Network code on requirements for grid connection of HVDC systems and DC-connected Power Park Modules
Commission Regulation (EU) 2016/1447

July, 5th 2016
ÍNDICE

- Subject matter and Scope of application
- Structure
- General Provisions
- Preliminary Analysis of Impacts on the Regulation
Subject matter:

This Regulation establishes the requirements for grid connections of high-voltage direct current (HVDC) systems and DC-connected power generators.

Actual situation of HVDC NCC:

At what stage is the NCC HVDC?
Comments sent to the translation.
Latest version available on the European Council Register Webpage:

Forecast date of entry into force:
3rd T 2016 (Scrutiny ended: 30/06/16)
Subject Matter and Scope of Application

Scope of application:

- **Connections HVDC**
 - Connecting synchronous areas or control areas.
 - Connecting generators in a synchronous area.
 - Embedded in a control area and connected to TS (or DS if “cross borderer impact” is demonstrated by the TSO).

- DC-connected power generators.

[Diagram showing connections HVDC between areas and control areas, and connection points.]
Map of European TS projects (medium and long term, and future projects)*

Northern Seas Offshore Grid Infrastructure 2030 – General Concept *

<table>
<thead>
<tr>
<th>GW</th>
<th>2020</th>
<th>Vision 1</th>
<th>Vision 2</th>
<th>Vision 3</th>
<th>Vision 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore wind</td>
<td>24.1</td>
<td>30.6</td>
<td>30.8</td>
<td>72.2</td>
<td>79.6</td>
</tr>
<tr>
<td>Onshore wind</td>
<td>94.0</td>
<td>110.9</td>
<td>124.7</td>
<td>155.1</td>
<td>154.5</td>
</tr>
</tbody>
</table>
Structure of HVDC NCC:

- Active power and frequency stability
- Reactive power and voltaje stability
- Fault-ride-through
- Protection and control
- Restoration of the system
- Information Exchange

Requirements

General Application

- General provisions
- Operational Notification
- Compliance
- Exemptions
- Technical requirements
- Cost Benefit Analysis

Specific Application

- HVDC systems
- Remote-end HVDC (interface with power park modules connections in DC)
- DC-connected power park modules

Procedures

- Operational procedures - Compliance - Exemptions - Cost benefit analysis
GENERAL PROVISIONS

Non-retroactive application of technical requirements

Application of NC HVDC requirements at the AC connection point.

No requirements are set on the DC side

The HVDC NC would apply to connections with the TS and DS in the case of power park modules connections in DC or synchronous or control areas connections.

The HVDC NC would not apply to HVDC connections embedded in the DS, unless REE justifies it has an impact on the TS → It is necessary to evaluate and define the impact on TS
GENERAL PROVISIONS

Frequency ranges
- Harmonization throughout the ENTSO-E area
- The asset of the TS shall withstand more than generators and demand

The HVDC NC does not discriminate technologies → Large number of non-exhaustive requirements
GENERAL PROVISIONS

For DC-connected generators:

It generally applies the RfG, except for the explicit exceptions set by HVDC NC.

The requirements are sometimes more strict than for AC-connected generators because of the weaker nature of the collection networks (frequency and voltage ranges).

It lays down requirements that have to be evaluated, considering the long-term planning of the TS.

For Remote-end HVDC converter stations:

• Apply all the requirements of the chapter for HVDC, and also
• Specific requirements are established to ensure coordination between generators and HVDC terminals: control specifications, different frequencies to 50 Hz, waveform quality, data exchange, etc.
Preliminary Analysis of Impacts on the Regulation

<table>
<thead>
<tr>
<th>Operational Procedures* affected</th>
<th>Atection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 Condiciones de entrega de la energía en puntos fronteras de la red gestionada por el OS</td>
<td>HVDC</td>
</tr>
<tr>
<td>1.6 Establecimiento de los planes de seguridad para la operación del sistema</td>
<td></td>
</tr>
<tr>
<td>7.4 Servicio complementario de control de tensión</td>
<td></td>
</tr>
<tr>
<td>9 Información intercambiada por el OS</td>
<td></td>
</tr>
<tr>
<td>11.1 y 11.2 Criterios generales de protección; Criterios de instalación y funcionamiento de los automatismos</td>
<td></td>
</tr>
<tr>
<td>12.1 y 12.2 Solicitud de acceso para la conexión de nuevas instalaciones; Instalaciones conectadas a RdT: requisitos mínimos de diseño, equipamiento, funcionamiento y seguridad y puesta en servicio</td>
<td></td>
</tr>
<tr>
<td>15.2 Servicio de gestión de la demanda de interrumpibilidad</td>
<td></td>
</tr>
</tbody>
</table>

*Additionally, possible revision of:

- RD 1955/2000, about waveform quality requirements.
- RD 1164/2001, about reactive power ranges.
- RD 1699/2011, about frequency ranges, voltage ranges, fault-ride-through, voltage control, etc.
- IET 2013/2013, about the management and application of the Interruptibility

Thank you for your attention
Implementation of the Connection Network Codes (NCC)

July, 5th 2016
Principios asumidos por REE para el proceso de implementación

Implementation of the regulation (specially through Pos) ⇒ MINETUR (Art.7.1 RfG, Art.3.10 LSE 24/2013)

Maintenance, at least, of the degree of technical requirements of national legislation or proposal (use of debates and decisions already passed)

Coordination TSO ⇔ DSO:
- Assignment of responsibilities TSO vs RSO (Arts. 7.3d y 7.9 in RfG): giving priority to the safety of the system as a whole, current normative situation, non-discriminatory treatment for subjects according to the connection point
- TSO and DSO coordination: Gradual and harmonized definition of requirements (Art.7.3.of RfG). POs (by REE in coordination with DSOs) ⇒ PODs (by DSO in coordination with REE)

Long term vision (3 years). General preliminary consideration of non-retroactive application (except for justification of need)
Relations diagram in the implementation process

PHASE 1: TECHNICAL DEVELOPMENT AND ADAPTATION OF THE REGULATIONS

- **SUPERVISION & MONITORING**
 - MINETUR
 - CNMC
 - REE *(DSO)*

- **IMPLEMENTATION PROPOSALS**
 - Implementation process monitoring group
 (Framed in the Planning Monitoring Group)

- **DEVELOPMENT AND COORDINATION**
 - WORKING GROUPS OF COORDINATION AND DEFINITION OF TECHNICAL REQUIREMENTS
 (Coordinated by REE and reduced in number of people)
 - COORDINATION GROUP TSO-DSO
 - Generators
 - Consumers

 - Coordination with adjacent TSO *

Only for very specific aspects (thresholds, quality of service, ...)
Goals:

- Serve as a facilitator for the further elaboration of the proposal of legislation
- Identify technical requirements or processes where the CNC established a need for coordination between the network managers and agents.
- Identify technical requirements or processes where, notwithstanding that the CNC does not establish a need for coordination for its definition, is deemed advisable to its existence;
- Determine the solutions to those situations where the necessary or desirable coordination between REE and DSO has been identified.

Expected results of the work performed:

Coordinated definition of requirements proposals (those that are not exhaustively defined in the CNC and which are need to be concretized at national level) to achieve the necessary coordination between the different agents and system operators (especially between REE and the DSO) in the field of the implementation of the CNC.
Grupos de trabajo en el proceso de implementación

"Final" translation

Publication in OJEU by EC. (Entry into force 20 days later)

3 months

SCRUTINY PHASE
(Parliament and European Council)

DCC
HVDC

RfG

2 years + 20d

Appropriate authority: Approval Requirements

DCC, HVDC 2ndT 2019-3rdT 2019

FORECAST/ESTIMATION:
RfG → 27/04/19

Publication in OJEU: 27/04/16
Entry into force: 17/05/16

Publicación de Código de Red

PHASE 1: TECHNICAL DEVELOPMENT AND ADAPTATION OF THE REGULATIONS

PHASE 2: APPROVAL OF REGULATIONS

PHASE 3: TECHNICAL ADAPTATION

6 months

Work Group Activity (until May 2017 approx.)

Códigos de Red de Conexión

FORECAST/ESTIMATION:

FORECAST/ESTIMATION:

PHASE 1: TECHNICAL DEVELOPMENT AND ADAPTATION OF THE REGULATIONS

PHASE 2: APPROVAL OF REGULATIONS

PHASE 3: TECHNICAL ADAPTATION

Appropriate authority: Approval Requirements

Publication in OJEU: 27/04/16
Entry into force: 17/05/16

Work Group Activity (until May 2017 approx.)

Códigos de Red de Conexión
Implementation Coordination Group (GCI)

OBIEJCTIVES

- Identify requirements or processes where the CNC establish the necessary coordination between REE and the DSO;
- Identify requirements or processes where, even if the CNC establish a necessary coordination between REE and the DSO, it is considered advisable to exist;
- Determine coordination solutions between REE and the DSO;
- Determine solutions to issues raised by GTGen and GTCon.

Aspects will be addressed with the 3 NCC

- RfG
- DCC
- HVDC

CREATION OF THE GROUP

- Group coordinated by REE
- Representation of DSO/Associations (5-8)
- Ministry and CNMC invited

DATE

- Meetings each 2 months (except for greater need)
- GCI activity until May 2017
Generators Working Group (GTGen)

OBJECTIVES

- Consultation forum to assist in the establishment of technical requirements of in relation with generators or HVDC systems, whether defined by REE or DSO, or both in the field of the GCI;
- To channel the debate on the establishment of technical requirements for reconsideration by REE or by DSOs, or both within the framework of the GCI, and with concern to generators or HVDC systems.

Scope

- Group coordinated by REE
- Representation of DSO (1-3)
- Representation of associations of generators, manufacturers or certifying entities (5-10)
- Ministry and CNMC invited

CREATION OF THE GROUP

Meetings each 2 months (except for greater need)
Activity of the GTGen until May 2017
Consumer Working Group (GTCon)

Objectives
- Consultation forum to assist in the establishment of technical requirements for consumers, whether defined by REE or DSO, or by both within the scope of the GCI;
- To channel the debate on the establishment of technical requirements for reconsideration by REE or by DSOs, or both within the framework of the GCI, and with concern to consumers.

Scope
- Group coordinated by REE
- Representation of DSO (1-3)
- Representation of consumer associations (3-5)
- Ministry and CNMC invited

Creation of the Group
Meetings each 2 months (except for greater need)
Activity of the GTCon until May 2017
Participation in the GCI, GenWG and ConWG working groups

PROPOSALS FOR PARTICIPATION

Publication of Group Creation

Launch Meetings

End of September 2016

GCI, GenWG and ConWG activity

Closing Meetings

~May 2017

GSP+ Diffusion

Working Groups of Coordination and Definition of Technical Requirements (Coordinated by REE and reduced in number of people)

Coordination Group TSO-DSO

Generators

Consumers

July 29, 2016

An email to be sent from the main associations (representatives of stakeholders and agents affected by the CNC) to the mailbox: implementacionNCC@ree.es, in which the nominated people and their contact details shall be indicated. Limited places.
Thank you for your attention

www.ree.es