

Session IV : Long term grid development – Technology and operations

Grid implementation : operation consideration

Rui Pestana, REN – Work Package leader

Agenda

- **O** Challenges for operation
 - ▶ New challenges for 2050

❑ Operation validation

- N-1 overloads
- Voltage profile (N-1)
- Short-circuit current
- Frequency Stability
- Small Signal analysis

• Conclusion

Challenges for operation

► Grid adequacy

- Avoid overload on lines, cables, transformers, etc.
- Keep the voltage profile normal
- Guarantee the security of the system in case of loss of equipment (n-1)

► New challenges for 2050

- High penetration of RES
 - RES are localised in different areas than traditional generation and they behave differently (power electronics ≠ synchronous generators)
- Increasing power exchanges
- High number of HVDC, some being embedded in the AC grid
- ► These challenges require in-depth and innovative studies.
 - Some preliminary work was carried out in e-Highway2050 to provide recommendations for further studies

Studied issues in the project

Steady state phenomena

- N-1 overloads
- Voltage limits (N-1)
- Short circuit currents

Dynamic phenomena

- Frequency stability
- Small signal stability

Test cases considered

► For each scenario at 2050:

- Winter peak and summer low
- Reinforcements with AC and DC lines

Scope of the analysis: Continental synchronous area

► Inputs:

- System simulations results at cluster level
- ENTSO-E description of the full network at 2030

N-1 overloads

- The contingency of the reinforcement did not show any highly critical overloads.
 - Only minor additional reinforcements are required.
- The test cases facing the highest flows (Large Scale RES, 100% RES) could not be simulated
 - At cluster level, the system is feasible, but at nodal level advanced methods are required to study it.
 - o See the methodology developed in the research part of the project (WP8)
- ► Tripping of DC connections creates more overloads than AC
 - The reason is that fixed setting points for DC were assumed.
 - Smarter control rules are necessary.

Voltage profile (N-1)

- ► The contingency list is the reinforcements for 2050
- ▶ In the majority of the cases, the system is secure (voltage drop <5%)
- Only one case shows a voltage drop of 25% :
 - loss of HVDC link between England and France with 6519 MW

Solution is to split the size of the link.

Short circuit currents

- ► The 400 kV network reaches 109 kA (Small & local summer low).
- The 220 kV network reaches 68 kA (Fossil & nuclear winter peak).
 - These are the total short-circuit currents, not the contribution for each circuit breaker.
- Further studies could include :
 - Computation of the individual contribution of individual circuit breaker
 - Improvements of the datasets (RES modeling should be improved in current models)

Frequency stability

► All cases analyzed were stable.

- Reduced model was used for Continental Europe
- The wind generators were modeled with the capability to provide frequency control
- Example: 4503 MW HVDC outage between France and Great Britain in 100% RES winter peak

Cases with a higher share of inverter based generation need further studies (see the EU project to start soon)

Small signal analysis

► In the majority of the cases, the system is secure

• Positive damping.

► Only one case show negative damping (-0.5)

• Mode of frequency 0.3382 Hz, scenario Fossil & nuclear, strategy with DC cables, winter peak.

x13 – Nuclear & Large Scale Fossil Fuel							
AC Strategy				DC Strategy			
WP		SL		WP		SL	
f	Ę	f	Ĕ	f	Ę	f	ξ
0.2147	3.51	0.3187	1.83	0.1576	5.04	0.2600	3.59
0.3794	1.48	0.4333	1.82	0.3382	-0.50	0.3628	1.87
0.4053	2.02	-	-	0.3439	1.91	0.4665	0.51

The low frequency oscillations are still on the range of the Power System Stabilizers.

Conclusion

► The European Network in 2050 will be more complex to operate

- Different mix of generation technology
 - o Less synchronous machines
 - o Less inertia
- Mix operation of HVDC with HVAC
 - o Changes the dynamics of the system
- ► Big challenge to handle very high flows in Europe
 - Additional studies and improvements of methodologies/datasets are necessary

Long distance transmission is limited by stability phenomena

- WACS Wide Area Control System in real-time is needed to preserve the security of the synchronous areas.
 - o Small signal stability show the possibility of negative damping.

